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Abstract: 
Bidirectionally trained neural networks would be very useful in many 
circumstances. Often, we have data available for a prediction problem, but 
prediction of properties for unknown or new situations is only part of the story. In 
many cases we know the effect we wish to achieve on the output, but what we do 
not know is how to modify the inputs to achieve this goal. A basic problem in this 
area is the inversion of many to one mappings. Our work is based on the popular 
backpropagation neural network to predict the GDP of developing countries. 
These networks are integrated with a Self-Organising Map to allow the inversion 
of many to one mappings.  
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1 Bidirectional Backprogration 

1.1 Introduction 

Most neural networks can be applied to real world systems to perform 
classification, pattern recognition or prediction tasks on the basis of input data. 
Given the output data, however, these neural network models are not able to 
produce any plausible input data unless another network is trained specifically for 
that task. This is done easily by humans. For example, we can retrieve an image 
for an elephant from the word elephant, and when we see an elephant we will find 
the corresponding word. Networks which can produce plausible input values for a 
given output value have many applications. Bidirectional associative memories [1, 
2] and the bidirectional version of counterpropagation networks [3] have been 
developed to learn bidirectional mappings. The problem with these approaches is 
their low capacity, low efficiency and multiple learning. By multiple learning we 



mean the different learning methods which are used in the first and second layer of 
bidirectional version of counterpropagation networks.  

1.2 Normal backpropagation training 

This network has no backward, lateral or layer-skipping connections. All 
processing neurons have a bias which is implemented as an extra input which is 
always on. Note that following the usual (unfortunate) convention, input neurons 
are drawn, however these are not processing neurons, merely switch boxes 
distributing the single input xi to the hidden neurons.  

The standard algorithm is as follows: 

1. Initialise weights (including bias weights) to small random values. 

2. Present input X = , desired output D. 

3. Calculate output Y = : 

 hidden activations   

 output activations   

 where   

4. Adapt weights recursively, starting with the output layer and working 
backwards towards the input layer: 

 For the output neurons:                           
 

 For the hidden neurons:   
  

5. Repeat from step 2 until finished. 

1.3 Reverse direction training 

We have applied the error back-propagation technique [4] in both reverse and 
forward directions to adjust the weight matrix of the network. In our experiments 
we did not need to use more hidden units in training a bidirectional network in 
comparison to the case of training a network in the traditional unidirectional way. 

When trained from left to right in Figure 1, the weights on the connections 
between layers are used normally, along with biases. Note that here input neurons 
are processing neurons when used in the reverse direction.  



When training in the reverse direction, 
different biases are used as shown. This 
would be the case for multiple hidden 
layers also. 

Due to a flatter search space, 
sometimes a higher number of epochs 
may be necessary for the network to 
converge in comparison to traditional 
unidirectional networks.  

The remaining challenge is the case 
where the function relating inputs to 
outputs is not invertible, or there is a 
relation which is many-to-one between 
inputs and outputs. 

 
Figure 1: Bidirectional network 

2 Data 

We use two data sets to demonstrate our techniques. These are a small synthetic 
data set, and a complex real world data set. These are described below. 

2.1 dh46 

This data set consists of 16 patterns, being all combinations of 4 binary elements. 
The single output is on when 3 out of 4 binary elements are on. This data set is of 
the class of data sets such as xor which are beyond the power of single 
perceptrons, and require a hidden layer trained by algorithms such as the back-
propagation training algorithm described in §1.2. At the same time, the data set is 
complex enough that in a 4-6-1 back-propagation network, it shows a range of 
behaviour from immediate learning, learning after some time with little visible 
improvement (training plateau), and never learning (stuck on a plateau / local 
minimum). For historical reasons this is called the dh46 pattern set. 

2.2 gdp 

The gdp data set is from the United Nations Conference on Trade and 
Development selected economic and social indicators of developing countries [5]. 
The data set includes the following 14 indicators: % population urban; size of total 
labour force; % of labour force in agriculture; % infant mortality; % public health 
expenditure; population per doctor; % access to water; illiteracy %; % public 



education expenditure; food production per capita; number of phones per capita; 
total population; average growth of population; density of population. The task is 
of course to predict the GDP of each country. 

3 Interactive competition model 

After training a back-propagation network, using as the input to the network the 
economic and social factors for a particular developing country, the network can 
quite accurately predict the GDP (given the quality of the data due to the difficulty 
of collection). But how is the network’s conclusion useful? 

3.1 Background 

In modelling the relationship between GDP and the selected socio-economic 
indicators, the real objective is not to predict GDP accurately as it can be 
measured directly, but to answer questions relating to change such as “If we 
wanted a higher GDP, how should (for example) general access to safe drinking 
water change,” or (more likely) “given the economic and social factors we are 
committed to politically, what factors can we change to achieve an effect on GDP 
or health or ...” and so on. 

A predictive model such as the trained feed-forward network can be forced to this 
end by perturbing the input values into the network and examining the results. 
This is very inefficient, given the large number of inputs even in this relatively 
simple case. 

The causal index of each input to the feed-forward network to the GDP output 
value provides a significance measure of that input’s relationship to the output, 
and can be used as a weight in a simple interactive neural network model. That is, 
the rate of change of the output when the input is in the vicinity of its actual value 
in a pattern represents the significance in the context of the actual example. 

3.2 The model 

The interactive activation and competition (iac) model consists of a collection of 
processing units organised into some number of competitive pools. There are 
excitatory connections among units in different pools and inhibitory connections 
between units within the same pool. The excitatory connections between pools are 
generally bi-directional, thereby making the processing interactive in the sense 
that processing in each pool both influences and is influenced by processing in 
other pools. Within a pool, the inhibitory connections run from each unit in the 



Figure 2: Simplified iac diagram showing pools 

pool to every other unit in the pool implementing a kind of competition among the 
units such that the unit or units in the pool that receive the strongest activation 
tend to drive down the activation of the other units [6].  

The network is operated by turning on a number of units and allowing the network 
to cycle until state has been reached. It is also possible to clamp some of the unit 
on to serve as a constant stimulus to the network. 

Figure 2 is a simplified diagram of an iac network, with three sample input pools. 
Values within pools are sub-ranges of the input data to the back-propagation net 
[7]. Weights between pools are bi-directional, set to the sum of causal indexes for 
each input / output sub-range pair. Note that not all sub ranges need to be indexed. 

 
 

3.3 Results 

Testing the interactive network in its response to change, for an example we clamp 
the gdp6 unit on, being two GDP sub-ranges higher than the actual GDP. All of 
the input values are clamped on except for the % public health expenditure, and % 
public education expenditure. After the stable state of the network is reached, the 
values of the variables which were not clamped provide the solution. 

Validation of the solution was done by using the trained feed-forward network, by 
constructing a new input pattern consisting of the old values of the clamped 
variables, and the resulting values of the unclamped variables. The test is whether 
the value of GDP predicted by the feed-forward network based on the new pattern 
is similar to the value the GDP was clamped to in the interactive network. In the 
case of the prediction, the result of the new pattern is a GDP value of 0.47 which 
is an increase in the GDP of about 2% which is not insignificant. This confirms 



both the increase we have tried to produce, and at the same time the difficulty of 
increasing the GDP with only the flexibility allowed by the few variables left 
unclamped. This suggests there are one or more countries in the list which have 
similar relationships between their public health and education expenditures and 
GDP. There is, however, a component of this approach which is still too 
simplistic, that of clamping values. The above strategy also assumes that, for 
example, the illiteracy rate will not be affected by the reduced public education 
expenditure, since the value was clamped. 

4 Hybrid SOM model 

4.1 Introduction 

The key notion in solving the inversion of many to one (many to many) mappings 
is to recognise the different categories on input which may give rise to a particular 
output. For this purpose we will use a self-organising map, described below. 

4.1.1 SOM algorithm 

1. Initialise weights to small random values:  

  N inputs and M outputs (N*M weights), set neighbourhood to large size  

2. Present input  

3. Compute distance from input to all nodes: 

  distance dj  from input pattern to node j is  

  where xi  is component i of input X  

  wij  is weight from input i to node j  

4. Select output node with minimum distance from input – j*  

5. Update weights to j* and its neighbours  

   

  for , ,  

6. Decrease neighbourhood size (NE), and decrease gain term (h) 

7. Continue from step 2. 



4.3 The hybrid model 

The graphical description of the model is below, in Figure 3, with only a few 
connections shown for clarity. The model consists of a standard back-propagation 
trained feedforward neural network, a single dimension self-organising map 
(SOM), the output of which is used to create the training set for a single layer 
back-propagation (or perceptron) network. This latter network uses (selected 
instances of) the activation values of the first network as its training input and 
produces the appropriate original input as its output. For use on unknown patterns, 
the output value is input to the SOM, mapped to the relevant SOM categories, and 
the appropriate SOM exemplars are used as inputs to the single layer to produce 
outputs. The process is explained and justified in detail in subsequent sections. 

 

Figure 3: The hybrid model during training 

4.3.1 Forward training on bp 

The original network is trained using standard back-propagation as described 
earlier, and can be used normally for prediction of outputs based on the usual 
inputs. An issue to resolve, however, is how to determine when to stop training, as 
we do not want to reserve some training patterns as a test set, for obvious reasons. 

In previous work [8], we have examined the activations of hidden neurons during 
back-propagation training. There is a clear indication of learning taking place 
while there is little or no change in the total sum of squares (tss) error measure. 
The point at which the tss falls, and there is substantial diminishing of the changes 
in behaviour of the hidden units indicates the point at which to cease training. The 



curves for the tss and hidden unit behaviour (represented as angular differences in 
their behavious vectors in the state space) for both the dh46 and gdp examples are 
below. 

Figure 4: Graphs of Total sum of squares and Neuron behaviour for dh46 and gdp 

From the dh46 graph on the total sum of squares, it is plausible to assume that the 
network has learnt at about 1500 epochs. This is clearly confirmed by the graph of 
neuron behaviour, where the lines smooth out after that point.  

For the gdp graph on total sum of squares, there is no obvious point which is 
different. The graph on neuron behaviour, however, indicates that sometime 
around 750 to 800 epochs was the appropriate point to cease training. 

4.3.2 Input into SOM 

The activation values produced by each hidden neuron in the original back-
propagation network are used as input for the SOM. These activation values were 



used to create the neuron behaviour graphs, and used to determine when to stop 
training the back-propagation network. In this case, the activation values from 
every tenth epoch were used. The SOM was trained using the algorithm described 
earlier, with an initial gain term of 0.9, initial neighbourhood of 30%, and 16 SOM 
neurons for both data sets. The SOM results for the dh46 and gdp data sets are 
described below. 

4.3.3 SOM results -  dh46 

For each of the 16 patterns (labelled p00 to p15), the second row shows the index 
of the nearest SOM unit (ie its category). The third row shows the 4 patterns 
which satisfy the ‘3 out of 4’ condition.  

The four sets of patterns which have a 1 in the desired output in the original 
training set have been identified by a contiguous subset of the SOM indices. There 
is substantial redundancy in the indices for many of the remaining patterns. Note 
that the SOM did not have direct access to the original training set, only to the 
activations of neurons being trained on that data set. Thus, for example, the 
activations of the hidden neurons every ten epochs for a total of 2000 epochs on 
pattern p07 had clearly contained some indication of the significance of this 
pattern and that it had some relationship to the patterns p11, p13, and p14. It is 
clear that p15 is also somewhat related, being the only pattern with 4 out of 4 
being on, and hence being somewhat more difficult to distinguish from the correct 
patterns. 

For comparison, the SOM was also run on the training pattern set. Clearly, there is 
only one set, which is repeated, to ensure the same total number of presentations 
of inputs to the SOM have taken place. The results were:  

There is no pattern to the 4 four on patterns, clearly the SOM on hidden neuron 
activations was discovering information which it is not able to discover directly 
from the original training set. This validates our use of the hidden neuron 
activations as the input to the SOM. 

 

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 

1 1 2 5 3 4 4 8 1 6 6 13 4 11 9 15 

       1    1  1 1  

 

 

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 

12 7 13 8 15 6 14 1 11 10 12 9 16 5 15 3 

       1    1  1 1  

 



4.3.4 SOM results -  gdp 

There are 143 patterns in the original gdp training set, so we can not readily show 
the pattern in the same way. Also, the target output is not symbolic and as easy to 
interpret as the dh46 data set. 

Some qualitative comparisons are possible. The developing countries most 
familiar to many in the West are the richest developing country. A test of the 
success of our technique would be whether these countries are sorted together. 

The SOM grouped the following countries in category 16: Brunei, Qatar, and 
United Arab Emirates; and in category 4: Chile, Colombia, Fiji, Hong Kong, 
Malta, Mauritius, Panama, Saudi Arabia, Singapore, Uruguay, and Venezuela. 
While these are surprises in the latter group, the three richest are grouped together, 
and clearly Hong Kong and Singapore we would have expected to end up in the 
same group. 

Again we compare with the result of running the SOM on the original data set. 
The results are less good. The three richest countries are in three different groups. 
The second grouping identified above partially survives, with 3 different 
countries. The changes would be hard to justify, for example Saudi Arabia is now 
clustered with Ghana. 

5 Conclusion 

We have introduced our technique for training a back-propagation network in the 
reverse direction by the use of a Self-Organising Map. This hybrid structure 
bidirectional neural network solves the previously identified problems of inverting 
many to one or many to many mappings. The steps in the process have been 
individually justified. The ability of such networks to provide suggestions for 
modification of input parameters to achieve the desired results will be useful in a 
number of application areas. 
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